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- How is cell fate determined?

(St-Pierre and Endy, PNAS, 2008)

Stochastic Genetic circuits

Implication for cancer biology



Stochastic network and cellular fate

• Origin of stochasticity:
– Many molecular networks are of small 

copy numbers (eg. mM – nM) and are 
stochastic: 

• transcription regulation, protein synthesis, 
signal transduction.

– Slow reactions: multistable systems

– Burst in transcription and translation

– Cell-cell variaton

– External environment

• Epigenetic Landscape of stochastic 
networks: Broad applications

– Phage lambda

– Stem cell differentiation

(Phage work: McAdams and Arkin, 1997; Aurell and Sneppen, 2002;  Zhu, Yin, Hood, 

and Ao, 2004)

                     

         

         

          

           
        

 

       

       

     
(Zhang and Wolyness, 2014)



Chemical Master Equation

• A general framework for studying biological 

networks

– Assumption: well-mixed system



Molecular reactions, state, and probability

• Molecular species and reactions:

– m molecular species: {X1, …, Xm}

• Xi:  i-th molecular species

– n chemical reactions:  R = {R1, …, Rn}

• Microstate: 

– combination of copy numbers at time t:

x(t) =  ( x1(t), … , xm(t))  2 Nm

– probability of system in state x(t): 

p(x(t) )



State Space and Probability Landscape

• State space X:

– The set of all possible combination of copy numbers

X =  { x(t) | t 2 (0, 1)},  discrete

– Size of state space:  |X|,  countable

• Probability landscape at time t :

{p (x(t) | (x(t) 2 X }



Chemical Reactions: Stoichiometry and Reaction Rate

• Chemical reaction rk has the form:

c1(k) X1 + c2(k) X2 + …+ cm(k) Xm

! c1'(k) X1 + c2'(k) X2 + … + cm'(k) Xm.

– Brings system from state xi to xj :    A jump process

• Reaction rate:  determined by intrinsic rate constant rk and 

copy numbers of reactants,  which are given by the state xi

Ak(xi, xj) = Ak(xi, …) = Ak(xi) =  

– If a reaction connects xi and xj , Ak(xi, xj) >0, 

• Else Ak(xi, xj) = 0

– If more than one reaction connects xi and xj ,

A(xi, xj) =  Ak(xi, xj) 



Discrete Chemical Master Equation

• A foundation framework for studying mesoscopic

biological networks

d p(x, t)/ dt = 

x' [ A(x', x) p (x', t) - A(x, x') p (x, t)]

– p(x(t)) is of continuous time

– States are discrete

• Matrix form:   let A = { A(xi, xj)},   A 2 R |X | £ |X |

d p(x, t)/ dt =   A p(x, t)  



Discrete CME

• Full account of probabilities of jumps:

– Regardless whether copy numbers are small or large, jumps are 
large or small

– Full stochasticity

• Can generate trajectories with correct probabilities

– Based on the network architecture and reaction rates with 
enumerated states

• Little applications

– Not feasible beyond very simple systems

Challenge:  Requires full description of the discrete state space!



The Holy Grail

• Time-evolving probability landscape p(x, t)

over all possible states 
– Full stochasticity

– Can account for nonlinearity in reactions

• Vector filed on the same state space

– Discrete view:  same k-pointed hats but of very 

different sizes

– Continuous view: generic vector field and such 

structures may be lost.



An Analogy

• Physics and chemistry:

– Schrodinger Equation

– Wave function or density 

function (or partition function 

in stat mech)

• Systems biology:

– Chemical Master Equation

– Landscape probability distribution 

and dynamic changes

• Exact solution 

– Nothing is known about how far 

we can go!

(see Qian and Beard, 2008)

• Exact solution 

– Possible for systems with 100s 

of atoms

• e.g. DFT.



(Courtesy: Prof Luonan Chen)



Solving Chemical Master Equation

• Analytical solution: not possible in general

– Except for toy problems or with assumptions

• e.g., scale separation, fast equilibrium for some reactions

• Direct numerical solution

– Requires full description of the enormous discrete state space
• Expecting explosive combinatorial size of space.

– Not feasible beyond simple systems.

(van Kampen, 1992)



Approximating discrete chemical master equation

• Finite State Projection: 

– Truncating the full state space 
– With error estimation: accuracy certificate

– Difficulty in choosing specific subspace and 
limiting its size

– Need absorption state
– Cannot compute the steady state probability 

landscape
• Leakage accumulates

(Munsky and Khammash, J Chem Phys, 2006)



Stochastic Simulation Algorithm

• Generating reaction trajectories through Monte Carlo

• But follows high probability events
– Very inefficient in sampling rare events.

• Difficult to assess convergency

• Recent work: biased Monte Carlo for rare events:
– wSSA (Kuwahara & Mura, 2008), dwSSA (Daigle et al, 2011), swSSA (Roh et al, 2011)

– Adaptively Biased Sequential Importance Sampling (ABSIS) 

(Cao and Liang, J Chem Phys, 2013, 139(2):025101)

(Gillespie, 1977)



Approximating dCME with Continuous Chemical 

Master Equation

• Regarding state space as continuous, 

• Assumption:

– Difference in the amount of molecules in neighboring states are 

infinitesimally small:

 p (x, t)/  t = sx’[ A(x', x) p (x', t) - A(x, x') p (x, t)]d x'

Not valid when only a handful of molecules !



Approximating continuous chemical master equation

• Fokker-Planck Equation: Approximating continuous CME
– Neighboring states have small difference

– Further assumptions:
• Jumps are small:    |xi – xj| < 

• Transition probability vary slowly:  A(x, y) ¼ A(x + 1, y+ 2)

• Probability vary slowly:  p (x, t) ¼ p ( x + , t)

– Replace the jump operator A(x’, x) from x’ to x:
• with a differential operator

• 2nd order Taylor expansion of the differential operator with higher order truncation

• Other Approximation
– Stochastic differential equation: Langevin equation

(Munsky and Khammash, J Chem Phys, 2006)

Errors due to these approximations are generally not known!



General Approach

• Identify a significant biological problem

• Construct a reasonable stochastic network

• Compute solutions

– Simulation using Gillespie algorithm

– Langevin/Fokker-Planck stochastic equation

– Analysis with Gaussian assumptions

– Techniques from other fields such as quantum field theory

• But is the network correct?  Are we finding the right 
solutions?

• The truth is unknown except simple cases

– Experimental results can provide answer but too much degeneracy

• Not for theory and algorithm development

Can mathematics help?



How to describe the discrete state space for direct solution of dCME?

• Naïve approach (Method 1)

– Bn, where:

• B = the maximum possible copy number of each molecular species    

in the system = “buffer size”

• n = number of species.

– e.g. # of states exponentially large: 

• eg, 16 molecular types, 30 total copies: (30+1)16=7.27x1023

– Many such states will never be visited

• Following trajectory of states from simulation

– No guarantee all accessible states will be visited

Needs a method that can efficiently describe accessible states



• Optimal enumeration algorithm of state space
– Assumes finite number of net molecules synthesized

– Starts with a given initial condition

• Optimal in memory requirement and time 
complexity

• All states reachable from an initial condition will be accounted 
for

• No irrelevant states are included

• All possible transitions will be recorded

• No infeasible transitions will be attempted

(Cao and Liang, BMC Systems Biology, 2008, 2:30;

Cao et al, PNAS, 2010, 107(43):18445-50

Cao and Liang, J Chem Phys, 2013, ,139(2):025101

Cao, Terebus, and Liang, 2014, manuscript             )

Finite Buffer dCME Method



(Cao and Liang, BMC Systems Biology, 2008, 2:30)



• Works for networks of reactions with arbitrary 
stoichiometry

• Optimal in memory requirement and time complexity
• All states reachable from an initial condition will be accounted for

• No irrelevant states are included

• All possible transitions will be recorded

• No infeasible transitions will be attempted



Computing Steady State Distribution

• Once states are defined, can compute steady state 

probability landscape with mild assumptions:

Let M = A + I Dt, solve p = M p

– Does not depend on initial condition

– It is the eigenvector with eigenvalue = 1

– e.g. Arnoldi method

(Cao and Liang, BMC Systems Biology, 2008, 2:30)



Computing Dynamics

Can use Krylov subspace method

(Sidje, 2002)

Eg. In a study of model proteins, 
where time-dependent dynamics 
changes of probability /concentration 
of all states/conformations during 
folding process are computed.

800,000 states

9-orders of magnitude
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Example: Toggle Switch

• Two genes, A and B.

– Products repress each other.

– One of the simplest 

networks with bistability

– No general analytical 

solution.

J Collins et al, 2000, Nature

Recent approximation methods:

(Schultz, Onuchic, and Wolyness, 2007, JCP; 

Kim and Wang, 2007,)



Toggle-Switch: Our results

• Size of state space: • Exact landscape of 

steady state probability:

# Prot A # B Size

10 10 764

50 50 19,804

100 100 79,604

150 150 179,404

200 200 319,204

250 250 499,004

300 300 718,804

350 350 978,604

400 400 1,278,404

Clear bistability

on/off off/on

on/on

off/off



Time evolving probability landscapes of toggle switch

Starting from uniform distribution Starting from state (A=100, B=0)



How to go beyond simple motifs?

• Challenging task

– Most studies have just a few nodes

– Use approximations: eg Langevin, with unknown errors

– Or run Gillespie algorithm, and hope for the best



Direction Solution: Multi-finite Buffer dCME Algorithm

• How do we know if computed attractive basins are real?

• How to be sure if the computed landscape is not erroneous?
– How to quantify errors?

• What are the best accuracy we can achieve? 

• Probability flux, boundaries, and truncation error of finite state 
space
– Boundary probability and convergency theory

– Can answer all above questions

• Mb-dCME algorithm and optimized finite state space
– Decomposition of reaction graphs

– Independent Birth-Death components

– Multiple buffer queues to control truncation errors

(Cao, Terebus, and Liang, 2014, manuscript )



Independent Birth-Death Components of Reactions

• iBDs: Decompose reactions into independent 

components

• Each iBD is of infinite size, except j-th iBD

• Study the steady state distribution



Analysis of Truncation of Infinite Rate Matrix

• Truncation of infinite spaces, where 

where 



• Can determine minimum buffer required for errors 

to be smaller than a pre-defined tolerance

• Optimal memory allocation so errors are 

minimized



Direction Solution: Multi-finite Buffer dCME Algorithm

• How do we know if computed attractive basins are 

real?

• How to be sure if the computed landscape is not 

erroneous?

– How to quantify errors?

• What are the best accuracy we can achieve? 

• Yes to all with mf-dCME method!

(Cao, Terebus, and Liang, 2014, manuscript )



MAPK cascade

Sizes of Buffer 

Queues

Mb-dCME

Finite Buffer

Hypercube

Method

Reduction 

Factor

3, 3 2, 176 4.3×109 2.0×106

6, 6 209,304 3.3×1013 1.6×108

9, 9 6,210,644 1.0×1016 1.6×109

14, 6 2,706,935 1.1×1011 4.1×104

• Closed system, 16 molecular 
species (n=16), 35 reactions.

• Reduction factor of  ca. 109

• All with errors quantified and 
ensured that they are small

KpY_MKP3

K_MKP3_Y

K_MKP3_T

KpT_MKP3_T

K_MEK_T

K_MEK_Y

KpY

KpT_MEK Kpp_MKP3

KpT_MKP3_Y

KpY_MEK

KpT

MEK

MKP3

iBD 1

iBD 2

(Cao, Terebus, and Liang, 2014, manuscript )



• Two pathways:

– Prophage/ Lysogenic 
pathway

• Integrate into host 
genome

– Lytic pathway: 

• genome replication, 
protein sysnthesis, 
assembly of viral 
particles, cell lysis, 
escape of mature phage

• Epigenetic memory

– Passed along

(Essential Cell Biology, Second Edition, Garland Science, 2004)(Arkin, Ross, McAdam, 1998)

Example: Phage Lambda’s Life Cycle: 
A choice between lysogenic and lytic growth

http://www.garlandscience.com/textbooks/081533480X.asp


• Systems stability against perturbation

• Robustness against genetic mutation

• Regulation mechanism of the switch

• Heritable epigenetic state

– DNA damage due to UV

How does it work?



Our model

• 13 molecular species

• 51 reactions

• 1.7M microstates

• Cooperativities
– CI2, Cro2

– Neighboring sites

• Implicit OR-OL looping effect
– Stabilized CI2 binding to OR2, 

with 10 £ higher CI synthesis 
rate with CI2 bound OR2

– PRM suppressed when CI2 bound 
to OR3

• Only possible with looping

(Cao, Lu, and Liang, Proc Natl Acad Sci USA, 2010)



Steady State Probablistic Landscape

• Different UV dosage: varying CI degradation rate

– Projection of 13D landscape to CI2-Cro2 subspace

• Lysogenic induction ( phage induction):

-- Switching from lysogeny to lytic development



Titration Curve: A Mechanistic Picture

• CI2 and Cro2 level:

– Integrate CI2 and Cro2 over 
landscape

• Wild type: Deep Threshold

– Stable to UV irradiation

• CI degradation rate can 
fluctuate over a wide region

• CI level changes little and 
Cro suppressed

– Efficient switch over a narrow 
region:

• Ultransensitivity for true 
signal after set point

• Maintenance of epigenetic 
state

– Same lysogeny upon cell 
growth and cell division

  
  
  
  
  
  
  
 

         

   

     
  
  
  
  
  
  
  
 

         

   

     
 

 

  

  

 

 

  

  

                                              

CI2

Cro2



Mechanism:

• Cooperativity 

is essential.

– Otherwise, no 

lysogeny.



Effects of Altered Operators

• Wild Type

• Mutants:

– 1-2-1

– 3’-2-3’

– 3-2-3

– 1-2-3

(Little et al, 2003, EMBO J)



Titration Curves: A Mechanistic Picture of Little Study

• All mutants have lower threshold in 
lysogenic-lytic state transition

– And also leaky: switching not 
efficient

• Mutants can be induced to lytic state 
with lower UV dosage

– Consistent with Little’s “hair trigger”
mechanism

• Some cannot lysogenize

– 1-2-3



Comparison with Stochastic 

Simulation Algorithm

• Improved Gillespie algorithm: 
StochKit

– Same model parameters, with 
CI kd = 0.002/s

– Three different initial 
conditions

• Time:
– dCME: 8 hours, 2GHz quad 

core, AMD

– SSA: not yet converged after 
48 hours

• Wrong conclusion

( Li, Cao, Petzhold, and Gillespie, 2008)

(Cao, Lu, and Liang, 

Proc Natl Acad Sci USA, 2010)



Comparison with Langevin SDE 

Method

• Langevin SDE
– Same model parameters, with 

CI kd = 0.0021/s

– Three different initial 
conditions

• Time:
– dCME: 8 hours, 

– Langevin SDE: not yet 
converged after 48 hours

• Wrong conclusion
– Transition phase vs lytic state

• It is unclear how much 
improvement can be achieved if 
different formulation of SDE 
and different stochastic 
parameters are chosen.



Remark

• dCME method can compute exact probabilit landscape 
of stochastic network
– Can solve problems that Gillespie algorithm is challenged

• Study critical rare events

• Mechanistic understanding



3.  Chromosome Folding: Epigenetic States of Cell

• How do distant genetic elements cooperate 

dynamically?

• Higher-order folding behavior of chromosome

• Noise removal: exclude nonspecific interactions

• Reconstructing 3D structures of chromosome

(with Gamze Gürsoy, Yun Xu, and Prof. Amy Kenter, manuscript)
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• Chromatin looping and organization: key to cell functions
– Gene regulation 

– Translocation

How to infer 3D structures?

http://pbil.univ-lyon1.fr/baobab/article.php3?id_article=278

http://upload.wikimedia.org/wikipedia/commons/c/cb/Translocation-4-20.png



• Chain polymer models: 
very useful

• Challenging
– Excluded volume
– Physical properties

• 30 nm fibre
• Persistence length

– Extremely challenging in 
sampling:

• Severe  nuclear confinement 

+  

Experimental constraints

(Work of Kuhn, Flory, de Gennes, Heerman, Langowski)

(from Jhunjhunwala, et al, Cell, 2009) 



Higher Order Architecture of Chromatin Folding

R2(g) scaling:  Spatial vs genomic distances 

( FISH studies)

• Short genomic distances

• Longer genomic distances: levels off

Pc(g) scaling:  Looping probability vs genomic 
distances

( HiC studies )

• Diverse, but on average:

Fractal Globule (FG) model:  
– Explains a and n at short genomic distance

– Not: leveling-off effects and the diverse a exponents

Strings and Binders Switch (SBS) model:
– Average scaling of a and n 

– But, significant parameter tuning

– Results are mutually exclusive (Lieberman-Eiden et al, 2010, Science,)

(Barbieri et al, 2012, PNAS)



Our Approach: C-SAC Model

Constrained Self-Avoiding Chromatin model

• Physical model of 
chromatin: with appropriate 
properties 

– Polymer beads 

– D: 30 nm chromatin fiber 

– Bond length: persistence 
length Lp =150 nm

– Self-avoiding with excluded 
volume 

– 1,000 units ~ 5,000 beads ~ 15 
Mbp long chain

• Spatial confinement 
explicitly modeled !
– Not possible with MD 

or Metropolis Monte 
Carlo

• 10,000 C-SAC chains
– Properly weighted!

…...
(Gürsoy, Xu, Kenter, and Liang, Nucleic Acid Res, 2014)



Spatial Confinement Important for  Chromosome Folding

• Reproduces R2(g) and Pc(g)

scaling 

– Currently the only polymer 

model account for all facts

– Without tuning parameter

• Drives formations of 

topological domains

• Nucleus size regulates 

chromosome structure 

– induces different folding 

landscapes 

• e.g., Stem cell with nucleus 

occupying 95% of volume

(Gürsoy, Xu, Kenter, and Liang, Nucleic Acid Res, 2014)



Remark

• Chromatin Chain Polymer Model and Sampling Techniques
– In confinement and with experimental constraints

• Removal of noise due to non-specific interactions



Summary

• Stochastic genetic circuits and cellular state
– Foundational principles and algorithms

– Cellular fate

• Chromosome folding and nuclear confinement: 3D structure 
predictions
– Removal of noise due to non-specific interactions.

– 3D physical basis of gene activation and cellular programming
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